

Co-organizers: J. Norris, G. Barbiellini, B. Dingus, G. Share, R. Svensson

The 30+ member GRB-SF Science Team – all those who have expressed interest – spans the LAT team, GBM team, SSC, and the community.

"Core Software Group" includes: S. Bansal, J. Bonnell, J. Cohen-Tanugi, M. Kippen, F. Longo, N. Omodei, J. Scargle, J. McEnery, J. Norris

EGRET/BATSE cross-calibration effort: B. Dingus, R. Preece

Combined LAT+GBM GRB analysis tools effort: D. Band

October 22, 2002 GRB-SF Science Team LAT Collaboration Meeting -- 1

GRB-SF Team: Current Focus

- ✓ Simulations: Construct synthetic GRBs spanning LAT+GBM energy range.
- ✓ LAT trigger: Optimize a realizable on-board GRB trigger.
- ✓ GRB physical model: Develop for LAT science analysis.
- ✓ LAT science analysis tools: advise on scope and design.
- **LAT alert: Determine practical contents of the LAT GRB alert message.**
- **GBM-S/C-LAT communications:** Study how GBM information can help identify LAT GRB photons on-board S/C.

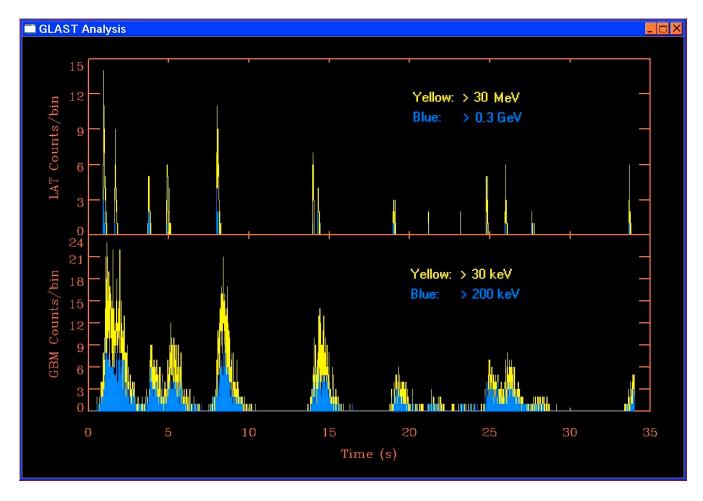
GRB Simulations: Signal

✓ GRB signal:

- GRBsim (N. Omodei) based on physics of colliding shells
- GRBmaker (S. Bansal: C++, J. Norris: IDL) based on empirical distributions (BATSE), and extrapolation to LAT energies:
 - **Peak Fluxes**
 - **Durations**
 - **Pulse Widths (E)**
 - **→** Spectral Power-laws

"necessary & ~ sufficient" for trigger studies

LAT profiles – single power-law spectra GBM profiles – broken power-law spectra


 We need the GBM information to study how GBM might help identify LAT photons on-board, or in ground quick-look data.

We also need to compare

- LAT and GBM trigger efficiencies, and
- LAT and GBM localization accuracies.

Atypical (They're all different) GRB Simulation

Dur = 34 s

$$F_p = 1.5 \text{ cm}^{-2} \text{ s}^{-1}$$

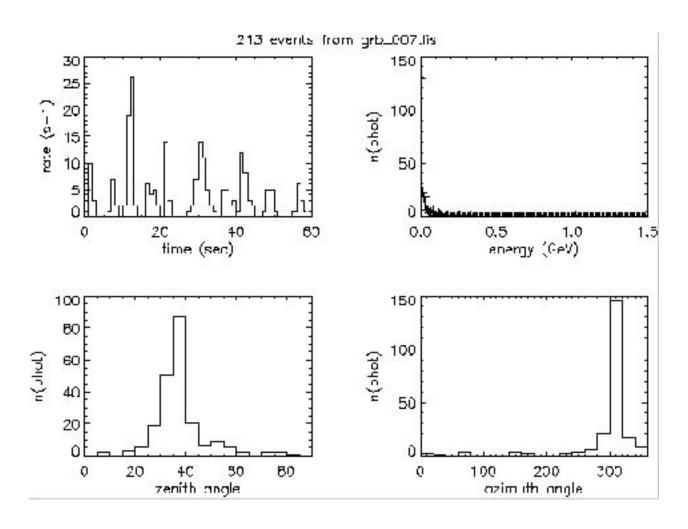
GBM: Area [] 3 Nal detectors

GRB Simulations: Background

- Use on-board track recon for GRB photons (J. Cohen-Tanugi)
- ✓ Detect the GRB signal, processing through GLEAM (J. Bonnell)
- ✓ Add to detected GRB signal ... the LAT on-board background:
 - After applicable on-board filters ☐ realize ~ 30 Hz background rate
 - Choose energies from on-board decimated background-mix spectrum (S. Ritz)
 - Choose directions of particles from detected distributions.
- © Do many set of runs, varying: background rate and form (constant, or 1st order polynomial), burst selection, event window. (Team)

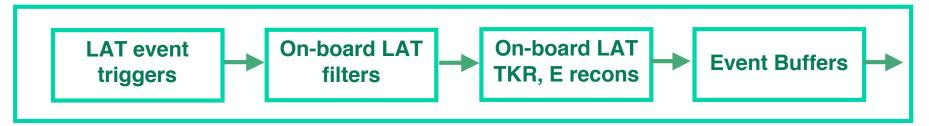
Bottom line philosophy: Separating the detection of signal and background in this way is expedient, and the resulting accuracy is commensurate with (or better than) the GRB simulation.

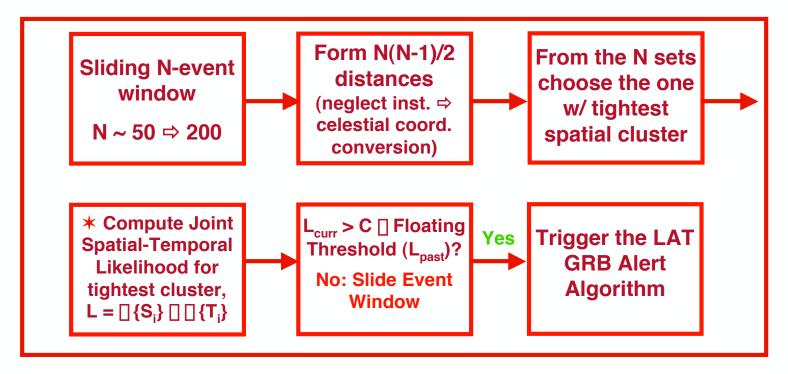
GRB Sims: What Things are Missing


Unit of the second of the sec

(S. Bansal, J. McEnery, B. Dingus, R. Preece, J. Norris)

- Pulse clustering
- Refined pulse-width energy dependence
- Spectral softening across burst duration
- EGRET/BATSE cross-calibration of power-law index distribution
- Duration and E_{peak} dependences on peak flux
- Redshift-dependent attenuation by IR background
- Energy- & Redshift-dependent temporal dispersion (QG theory)
- All refinements pertain (mostly) to science investigations.




GRBmaker: Testing

"Placeholder" LAT GRB Trigger

★ Various spatial, temporal (Bayesian Blocks) refinements possible.


Some LAT GRB Alert Trade Studies

- **Output** How to realize best, prompt LAT GRB localization:
 - Use many LAT photons with TKR recon on-board, OR Fewer (but high E) photons telemetered to ground in alert message, and run "full-up" TKR recon at MOC?
- What kind of GBM information might be used to help identify LAT photons on-board:

Use some measure of spectral hardness + count rates, OR
 Specific timing information about pulse structure positions ?

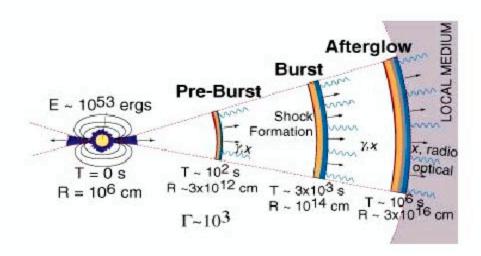
Like Bayesian Blocks

J. Scargle, S.J.S.U.

© Definition of LAT alert parms (spectral, temporal, spatial)

GRB Physical Model

The Theoretical model


We have started from a plausible astrophysical source model (Fireball Model) that describes the temporal behaviour of a typical Gamma Ray Burst

The central engine emits shells with different Lorentz Factor.

The shells collide -> formation of shocks wave inside the shell's material

The shock accelerate the electrons that emits by synchrotron (presence of MF).

The high energy emission is provide by the Compton Scattering

GRB Processing: Summary

- ✓ A GRB core simulation group has been formed, is seriously pursuing practical answers to LAT trigger, alert and localization issues, and will interact with flight SW teams.
- ✓ The two (C++) GRB simulation packages (one empirical, one physics based) make synthetic GRBs spanning the GBM+LAT energy regime suitable for addressing the issues.
- ✓ A (5-dimensionally) adjustable strawman LAT GRB trigger algorithm (C++) is being exercised in the Gleam context.
- A plan for defining and optimizing the contents of the LAT GRB alert message is in place – 6 to 9 months for recommendation.
- **○** A related study is planned to determine whether the most rapid, accurate LAT GRB localizations should be generated onboard, or at the MOC 9 to 12 months for recommendation.